Short Communications

Contributions intended for publication under this heading should be expressly so marked; they should not exceed about 1000 words; they should be forwarded in the usual way to the appropriate Co-editor; they will be published as speedily as possible. Publication will be quicker if the contributions are without illustrations.

Acta Cryst. (1969). A25, 581
Diamagnetic anisotropies of some organic molecules. By M. A. Lasheen, Physics Department, Faculty of Science, Alexandria University, Alexandria, U.A.R.
(Received 22 July 1968 and in revised form 20 December 1968)
The molecular susceptibilities and anisotropies of some aromatic molecules have been deduced from their crystal diamagnetic susceptibilities and their molecular orientations. The molecules investigated are $10,10^{\prime}-$ dianthronyl, bi(anthracene-9,10-dimethylene) photo-isomer and potassium acid phthalate. The molecular anisotropy can usually be calculated with a good degree of accuracy even in cases where the mean absolute susceptibility is not known with certainty.
$\mathrm{Bi}\left(\right.$ anthracene-9,10-dimethylene) photo-isomer, $\left(\mathrm{C}_{16} \mathrm{H}_{12}\right)_{2}$
The crystal magnetic anisotropies of this compound were measured by the author (Lasheen, 1964b) who found:
$\chi_{1}-\chi_{2}=94 \cdot 9, \chi_{1}-\chi_{3}=90 \cdot 7, \quad \chi_{3}-\chi_{2}=4.2$ (all in 10^{-6} e.m.u. g^{-1}); ψ (angle between χ_{1} and [001], positive in obtuse β) $=+30 \cdot 5^{\circ}$.

Fig.1. Projection of the molecule on a plane normal to the molecular axis M (Ehrenberg, 1966).

By the use of Pascal's additive law, the mean molecular susceptibility and hence the crystal magnetic susceptibilities are: $\bar{\chi}_{M}=-276 \cdot 32, \quad \chi_{1}=-214 \cdot 45 \pm 0 \cdot 22, \quad \chi_{2}=-309 \cdot 35 \pm$ $0 \cdot 22, \chi_{3}=-305 \cdot 15 \pm 0 \cdot 32$.

The crystal structure of bi(anthracene-9,10-dimethylene) photo-isomer, $\left(\mathrm{C}_{16} \mathrm{H}_{12}\right)_{2}$, was determined by Ehrenberg (1966) who found: $a=8.56 \pm 0.07, b=12.99 \pm 0.09, c=9.87$ $\pm 0.08 \AA, \beta=111^{\circ} 39^{\prime}, Z=2, P 2_{1} / a$.

The molecules lie on centres of symmetry. The angle of bending of the half molecule was found to be $2\left(23^{\circ} 40^{\prime}\right)$ as shown in Fig. 1, which gives a projection of the molecule on a plane normal to the molecular axis M.

The direction cosines of the molecular axes L, M and N of the plane passing through the atoms $\mathrm{C}(11), \mathrm{C}(12)$, $\mathrm{C}(13)$ and $\mathrm{C}(14)$ were calculated referred to the orthogonal axes a^{\prime}, b and c, where a^{\prime} is perpendicular to both the b and c axes. They are:

	a^{\prime}	b	c
L	0.2053	-0.1674	0.9643
M	0.7207	0.6925	-0.0332
N	0.6620	-0.7016	-0.2636

Thus the molecular susceptibilities and anisotropy are:

$$
\begin{aligned}
& K_{L}=-216 \cdot 7 \pm 1 \cdot 0 \\
& K_{M}=-181 \cdot 9 \pm 10 \cdot 1 \\
& K_{N}=-430 \cdot 4 \pm 9 \cdot 0
\end{aligned} \quad \Delta K=231 \cdot 1 \pm 10 \cdot 4
$$

Potassium acid phthalate, $\mathrm{C}_{6} \mathrm{H}_{4} \mathbf{(C O O H)}$ (COOK)

Lasheen (1964a) measured the crystal magnetic anisotropies and Lasheen \& Heddewi (1967) measured the mean molecular susceptibility, These are:

$$
\chi_{b}-\chi_{a}=35 \cdot 6, \quad \chi_{c}-\chi_{a}=41.7, \quad \chi_{c}-\chi_{b}=6.0, \quad \bar{\chi}_{M}=-99.25 .
$$

$$
\text { Hence, } \chi_{a}=-125 \cdot 02 \pm 0 \cdot 12, \chi_{b}=-89 \cdot 42 \pm 0 \cdot 19, \chi_{c}=-83 \cdot 32
$$ $\pm 0 \cdot 20$ (10^{-6} e.m.u. g^{-1}).

The molecular susceptibilities of this molecule were previously calculated (Lasheen, 1964a) by the use of the direction cosines of ammonium acid phthalate, whose crystal

Table 1. Molecular susceptibilities and anisotropy of half the molecule of $10,10^{\prime}$-dianthronyl compared with those of anthraquinone (Lasheen, 1964a)

	K_{L}	K_{M}	K_{N}	ΔK
Half the molecule of $10,10^{\prime}$-dianthronyl	$-67 \cdot 1 \pm 1 \cdot 4$	$-70 \cdot 7 \pm 1 \cdot 2$	$-207 \cdot 4 \pm 0 \cdot 5$	$138 \cdot 5 \pm 1 \cdot 0$
Anthraquinone	$-76 \cdot 1$	$-64 \cdot 5$	$-217 \cdot 9$	$147 \cdot 6$

structure had been determined by Okaya \& Pepinsky (1957).
The crystal structure of potassium acid phthalate was later determined by Okaya (1965) who found:
$a=6 \cdot 46_{6}, b=9 \cdot 60_{9}, c=13 \cdot 85_{7} \AA, Z=4, P 2_{1} a b$.
The angles between the plane of the benzene ring and those of the two carboxyl groups are 31.7 and 75.4° respectively.

$$
10,10^{\prime} \text {-Dianthronyl, }\left(\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{O}\right)_{2}
$$

Crystals of $10,10^{\prime}$-dianthronyl were obtained during the crystallization of anthrone from both acetic acid and ethyl alcohol. It was assumed (Lasheen, 1963, 1964b) that these crystals belonged to a new form of anthrone. Ehrenberg (1967) found that it was a dimer and determined its crystal structure. The unit-cell dimensions are: $a=13.68 \pm 0.04$, $b=7.751 \pm 0.003, c=17.92 \pm 0.04 \AA, \beta=91 \cdot 1^{\circ} \pm 0.3^{\circ}, Z=4$, space group I2/a.

Each molecule has a twofold axis of symmetry perpendicular to the $\mathrm{C}(10)-\mathrm{C}\left(10^{\prime}\right)$ bond connecting the two halves of the molecule, coinciding with the twofold axis in the unit cell. $\mathrm{C}(10)$ is $0.321 \AA$ from the best plane through the half-molecule, indicating a considerable pull towards the second half of the molecule.

The crystal magnetic anisotropies (all in 10^{-6} e.m.u. g. ${ }^{-1}$) are:
$\chi_{1}-\chi_{2}=252 \cdot 6, \chi_{3}-\chi_{2}=227 \cdot 3, \chi_{1}-\chi_{3}=25 \cdot 3 ; \psi$ (angle between χ_{1} and [001], positive in obtuse β) $=+14 \cdot 9^{\circ} \pm 1 \cdot 1^{\circ}$ observed, $=+14 \cdot 3^{\circ} \pm 1 \cdot 3^{\circ}$ calculated.

The mean susceptibility of $10,10^{\prime}$-dianthronyl was calculated by using Pascal's additive law and the mean susceptibility of anthrone, $\bar{\chi}_{M}=-118$, determined by Matsunaga (1958). Thus, $\bar{\chi}_{M}=-230.14$ and hence, $\chi_{1}=-137.5 \pm 1 \cdot 9$, $\chi_{2}=-390 \cdot 1 \pm 1 \cdot 9, \chi_{3}=-162 \cdot 8 \pm 1 \cdot 8$.

The direction cosines of the axes L, M and N for half of the molecule referred to the orthogonal axes a^{\prime}, b and c, where a^{\prime} is perpendicular to both the b and c axes are:

	a^{\prime}	b	c
L	0.0175	0.6020	-0.7983
M	0.3705	0.7364	0.5660
N	-0.9303	0.3011	0.2079

The molecular susceptibilities and anisotropy, calculated by Lonsdale \& Krishnan's (1936) method, are shown in Table 1 together with those of anthraquinone (Lasheen, 1964a).
It was expected that the molecular anisotropy of half the molecule of $10,10^{\prime}$-dianthronyl would be just less than that of anthraquinone by the value contributed by the $>\mathrm{C}=\mathrm{O}$ bond, which is equal to $3 \cdot 1$ e.m.u. g^{-1} (Lasheen, 1964a, p. 380). This still leaves a small difference and also K_{L} is less than K_{M} in the case of the $10,10^{\prime}$-dianthronyl molecule. This may be a result of the $\mathrm{C}(10)$ atom being displaced from the best plane of the half molecule by $0.321 \AA$ towards the second half.

The direction cosines of the molecular axes L, M and N are:

	a	b	c
L	0.1609	0.4349	0.8858
M	0.5148	-0.8029	0.3006
N	-0.8399	-0.4111	0.3543

Thus the molecular susceptibilities and anisotropy are:

$$
\begin{gathered}
K_{L}=-73 \cdot 92 \pm 0 \cdot 10 \\
K_{M}=-79 \cdot 12 \pm 0 \cdot 13 \quad \Delta K=68 \cdot 27 \pm 0 \cdot 12 \\
K_{N}=-144 \cdot 79 \pm 0.08
\end{gathered}
$$

The variances in the crystal magnetic susceptibilities and the resulting probable errors in the molecular susceptibilities and anisotropies were calculated by the method given for orthorhombic crystals by Lasheen \& Tadros (1968) and for monoclinic crystals by Walley (1967).

References

Ehrenberg, M. (1966). Acta Cryst. 20, 183.
Ehrenberg, M. (1967). Acta Cryst. 22, 482.
Lasheen, M. A. (1963). Acta Cryst. 16, 1260.
Lasheen, M. A. (1964a). Phil. Trans. A256, 357.
Lasheen, M. A. (1964b). Acta Cryst. 17, 1588.
Lasheen, M. A. \& Heddewi, S. (1967). To be published.
Lasheen, M. A. \& Tadros, S. (1968). Acta Cryst. A 24, 287.
Lonsdale, K. \& Krishnan, K. S. (1936). Proc. Roy. Soc. A156, 597.
Matsunaga, Y. (1958). Bull. Chem. Soc. Japan, 31, 774.
Okaya, Y. \& Pepinsky, R. (1957). Acta Cryst. 10, 324.
Okaya, Y. (1965). Acta Cryst. 19, 879.
Walley, D. (1967). Private communication.

